f07 — Linear Equations (LAPACK) Introduction — 07

NAG C Library Chapter Introduction
f07 — Linear Equations (LAPACK)

Contents
1 Scope of the Chapter 2
2 Background to the Problems 2
2.1 NOtation 2
2.2 Matrix Factorizations 3
2.3 Solution of Systems of Equations 3
2.4 Sensitivity and Error Analysis 3
2.4.1 Normwise error bounds 3
2.4.2 Estimating condition numbers 4
2.4.3 Componentwise error bounds 4
2.4.4 Tterative refinement of the solution 4
2.5 Matrix Inversion 5
2.6 Packed Storage 5
2.7 Band Matrices 5
2.8 Block Algorithms 6
3 Recommendations on Choice and Use of Available Functions 6
3.1 Available Functions e, 6
3.2 NAG Names and LAPACK Names 7
3.3 Matrix Storage Schemes 8
3.3.1 Conventional StOTage ottt 8
3.3.2 Packed storage 9
333 Band storage 10
3.3.4 Unit triangular matrices 11
3.3.5 Real diagonal elements of complex matrices 11
3.4 Parameter Conventionst i e 11
3.4.1 Option parameters oot i e e e e e 11
3.4.2 Problem dimensions 11
3.5 Tables of Available Functions 12
4 Index 14
5 Functions Withdrawn or Scheduled for Withdrawal 16
6 References 16
[NP3645/7] 107.1

Introduction — f07 NAG C Library Manual

1 Scope of the Chapter

This chapter provides functions for the solution of systems of simultaneous linear equations, and associated
computations. It provides functions for

— matrix factorizations;
— solution of linear equations;
— estimating matrix condition numbers;
— computing error bounds for the solution of linear equations;
— matrix inversion.
Functions are provided for both real and complex data.

For a general introduction to the solution of systems of linear equations, you should turn first to the f04
Chapter Introduction. The decision trees, at the end of the f04 Chapter Introduction, direct you to the most
appropriate functions in Chapter f04 or Chapter f07 for solving your particular problem. In particular,
Chapter f04 contains Black Box functions which enable some standard types of problem to be solved by a
call to a single function. Where possible, functions in Chapter f04 call Chapter f07 functions to perform
the necessary computational tasks.

The functions in this chapter (Chapter f07) handle only dense and band matrices (not matrices with more
specialized structures, or general sparse matrices).

The functions in this chapter have all been derived from the LAPACK project (see Anderson et al. (1999)).
They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of systems of linear equations. Consult a
standard textbook, for example Golub and Van Loan (1996) for a more thorough discussion.

2.1 Notation
We use the standard notation for a system of simultaneous linear equations:
Az =10 (1)

where A is the coefficient matrix, b is the right-hand side, and x is the solution. A is assumed to be a
square matrix of order n.

If there are several right-hand sides, we write
AX =B (2)

where the columns of B are the individual right-hand sides, and the columns of X are the corresponding
solutions.

We also use the following notation, both here and in the function documents:

z a computed solution to Az = b, (which usually differs from the exact solution x
because of round-off error)
r=b— Az the residual corresponding to the computed solution &
x|, = max|z;]| the infinity-norm of the vector x
7

Al = niialej\aij| the infinity-norm of the vector A
|| the vector with elements |x;|
|A] the matrix with elements |a;;

Inequalities of the form |A| < |B| are interpreted componentwise, that is |a,;| < [b;;| for all i, j.

107.2 [NP3645/7]

f07 — Linear Equations (LAPACK) Introduction — 07

2.2 Matrix Factorizations

If A is upper or lower triangular, Az = b can be solved by a straightforward process of backward or
forward substitution.

Otherwise, the solution is obtained after first factorizing A, as follows.
General matrices (LU factorization with partial pivoting)
A=PLU

where P is a permutation matrix, L is lower-triangular with diagonal elements equal to 1, and U is upper-
triangular; the permutation matrix P (which represents row interchanges) is needed to ensure numerical
stability.

Symmetric positive-definite matrices (Cholesky factorization)
A=U"U or A=LL"
where U is upper triangular and L is lower triangular.
Symmetric indefinite matrices (Bunch—Kaufman factorization)
A=PUDU"P" or A=PLDL"P"

where P is a permutation matrix, U is upper triangular, L is lower triangular, and D is a block diagonal
matrix with diagonal blocks of order 1 or 2; U and L have diagonal elements equal to 1, and have 2 by 2
unit matrices on the diagonal corresponding to the 2 by 2 blocks of D. The permutation matrix P (which
represents symmetric row-and-column interchanges) and the 2 by 2 blocks in D are needed to ensure
numerical stability. If A is in fact positive-definite, no interchanges are needed and the factorization

reduces to A =UDU" or A= LDL" with diagonal D, which is simply a variant form of the Cholesky
factorization.

2.3 Solution of Systems of Equations

Given one of the above matrix factorizations, it is straightforward to compute a solution to Az = b by
solving two subproblems, as shown below, first for y and then for x. Each subproblem consists essentially
of solving a triangular system of equations by forward or backward substitution; the permutation matrix P
and the block diagonal matrix D introduce only a little extra complication:

General matrices (LU factorization)
Ly= P
Ur=y
Symmetric positive-definite matrices (Cholesky factorization)
T _
Uy=5b or L% =b
Symmetric indefinite matrices (Bunch—Kaufman factorization)
PUDy=1b or PLDy=1b
UTPTQj:y LTPTa;:y
2.4 Sensitivity and Error Analysis
2.4.1 Normwise error bounds

Frequently, in practical problems the data A and b are not known exactly, and it is then important to
understand how uncertainties or perturbations in the data can affect the solution.

If = is the exact solution to Az =0, and = + 6z is the exact solution to a perturbed problem
(A+6A)(z+ éx) = (b+ 6b), then

52 <||6A|| |réb||>
<k(A)|—+-—) + - (2nd-order terms
el = "W T ()

[NP3645/7] 107.3

Introduction — f07 NAG C Library Manual

where k(A) is the condition number of A defined by
r(A) = [JA[LA7Y. (3)

In other words, relative errors in A or b may be amplified in = by a factor x(A). Section 2.4.2 discusses
how to compute or estimate x(A).

Similar considerations apply when we study the effects of rounding errors introduced by computation in
finite precision. The effects of rounding errors can be shown to be equivalent to perturbations in the

0A ob
|||A||H and ||||b|]| are usually at most p(n)e, where € is the machine precision and

p(n) is an increasing function of n which is seldom larger than 10n (although in theory it can be as large
as 2" 1.

original data, such that

In other words, the computed solution is the exact solution of a linear system (A + 6A)Z = b+ 6b
which is close to the original system in a normwise sense.

2.4.2 Estimating condition numbers

The previous section has emphasized the usefulness of the quantity x(A) in understanding the sensitivity
of the solution of Ax =b. To compute the value of x(A) from equation (3) is more expensive than
solving Az = b in the first place. Hence it is standard practice to estimate x(A), in either the 1-norm or
the oo norm, by a method which only requires O(nz) additional operations, assuming that a suitable
factorization of A is available.

The method used in this chapter is Higham’s modification of Hager’s method (Higham (1988)). It yields
an estimate which is never larger than the true value, but which seldom falls short by more than a factor of
3 (although artificial examples can be constructed where it is much smaller). This is acceptable since it is
the order of magnitude of x(A) which is important rather than its precise value.

Because x(A) is infinite if A is singular, the functions in this chapter actually return the reciprocal of
k(A).
2.4.3 Componentwise error bounds

A disadvantage of normwise error bounds is that they do not reflect any special structure in the data A and
b — that is, a pattern of elements which are known to be zero — and the bounds are dominated by the
largest elements in the data.

Componentwise error bounds overcome these limitations. Instead of the normwise relative error, we can
bound the relative error in each component of A and b:

ba;;| |6b
(2] 190
ik \ lag] " by

where the componentwise backward error bound w is given by

o |7"i|
w = max

i (JAL12] + [o]);

Functions are provided in this chapter which compute w, and also compute a forward error bound which is
sometimes much sharper than the normwise bound given earlier:

lz = &l _ A Irlloe
el = Ml
Care is taken when computing this bound to allow for rounding errors in computing r. The norm

I|A~").7|||,, is estimated cheaply (without computing A~') by a modification of the method used to
estimate x(A).

2.4.4 Iterative refinement of the solution

If Z is an approximate computed solution to Az = b, and r is the corresponding residual, then a procedure
for iterative refinement of & can be defined as follows, starting with zy = Z:

107.4 [NP3645/7]

f07 — Linear Equations (LAPACK) Introduction — 07

for : =0,1,..., until convergence

compute 7r; =b— Aux;
solve Ad; =r;
compute x;, =x; +d;

In Chapter f04, functions are provided which perform this procedure using additional precision to compute
r, and are thus able to reduce the forward error to the level of machine precision.

The functions in this chapter do not use additional precision to compute r, and cannot guarantee a small
forward error, but can guarantee a small backward error (except in rare cases when A is very ill-
conditioned, or when A and x are sparse in such a way that |A|.|z| has a zero or very small component).
The iterations continue until the backward error has been reduced as much as possible; usually only one
iteration is needed, and at most five iterations are allowed.

2.5 Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve

Az = b by first computing A~' and then forming the matrix-vector product z = A~'b; the procedure
described in Section 2.3 is more efficient and more accurate.

However, functions are provided for the rare occasions when an inverse is needed, using one of the
factorizations described in Section 2.2.

2.6 Packed Storage

Functions which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If the upper or lower triangle is stored
conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements of the
array can be used to store other useful data. However, that is not always convenient, and if it is important
to economize on storage, the upper or lower triangle can be stored in a one-dimensional array of length
n(n + 1)/2; in other words, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.2. It may also be used
for triangular matrices.

Functions designed for packed storage perform the same number of arithmetic operations as functions
which use conventional storage, but they are usually less efficient, especially on high-performance
computers, so there is then a trade-off between storage and efficiency.

2.7 Band Matrices

A band matrix is one whose non-zero elements are confined to a relatively small number of sub-diagonals
or super-diagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme used for band matrices is described
in Section 3.3.3.

The LU factorization for general matrices, and the Cholesky factorization for symmetric positive-definite
matrices both preserve bandedness. Hence functions are provided which take advantage of the band
structure when solving systems of linear equations.

The Cholesky factorization preserves bandedness in a very precise sense: the factor U or L has the same
number of super-diagonals or sub-diagonals as the original matrix. In the LU factorization, the row-
interchanges modify the band structure: if A has k; sub-diagonals and k, super-diagonals, then L is not a
band matrix but still has at most k; non-zero elements below the diagonal in each column; and U has at
most k; + k, super-diagonals.

The Bunch—Kaufman factorization does not preserve bandedness, because of the need for symmetric row-
and-column permutations; hence no functions are provided for symmetric indefinite band matrices.

The inverse of a band matrix does not in general have a band structure, so no functions are provided for
computing inverses of band matrices.

[NP3645/7] 107.5

Introduction — f07 NAG C Library Manual

2.8 Block Algorithms

Many of the functions in this chapter use what is termed a block algorithm. This means that at each major
step of the algorithm a block of rows or columns is updated, and most of the computation is performed by
matrix-matrix operations on these blocks. The matrix-matrix operations are performed by calls to the
Level 3 BLAS (see Chapter f16), which are the key to achieving high performance on many modern
computers. See Golub and Van Loan (1996) or Anderson et al. (1999) for more about block algorithms.

The performance of a block algorithm varies to some extent with the blocksize — that is, the number of
rows or columns per block. This is a machine-dependent parameter, which is set to a suitable value when
the library is implemented on each range of machines. Users of the library do not normally need to be
aware of what value is being used. Different block sizes may be used for different functions. Values in
the range 16 to 64 are typical.

On some machines there may be no advantage from using a block algorithm, and then the functions use an
unblocked algorithm (effectively a blocksize of 1), relying solely on calls to the Level 2 BLAS (see
Chapter f16 again).

3 Recommendations on Choice and Use of Available Functions

3.1 Available Functions

Table 1 and Table 2 in Section 3.5 show the functions which are provided for performing different
computations on different types of matrices. Table 1 shows functions for real matrices; Table 2 shows
functions for complex matrices. Each entry in the table gives the NAG function name, the LAPACK
single precision name, and the LAPACK double precision name (see Section 3.2).

Functions are provided for the following types of matrix:
general
general band
symmetric or Hermitian positive-definite
symmetric or Hermitian positive-definite (packed storage)
symmetric or Hermitian positive-definite band
symmetric or Hermitian indefinite
symmetric or Hermitian indefinite (packed storage)
triangular
triangular (packed storage)
triangular band

For each of the above types of matrix (except where indicated), functions are provided to perform the
following computations:

(a) (except for triangular matrices) factorize the matrix (see Section 2.2);
(b) solve a system of linear equations, using the factorization (see Section 2.3);

(c) estimate the condition number of the matrix, using the factorization (see Section 2.4.2); these
functions also require the norm of the original matrix (except when the matrix is triangular) which
may be computed by a function in Chapter f16;

(d) refine the solution and compute forward and backward error bounds (see Section 2.4.3 and
Section 2.4.4); these functions require the original matrix and right-hand side, as well as the
factorization returned from (a) and the solution returned from (b);

(e) (except for band matrices) invert the matrix, using the factorization (see Section 2.5).

Thus, to solve a particular problem, it is usually necessary to call two or more functions in succession.
This is illustrated in the example programs in the function documents.

107.6 [NP3645/7]

f07 — Linear Equations (LAPACK) Introduction — 07

3.2 NAG Names and LAPACK Names

As well as the NAG function name (beginning f07-), Table 1 and Table 2 show the LAPACK function
names in both single and double precision.

The functions may be called either by their NAG short names or by their NAG long names. The NAG
long names for a function is simply the LAPACK name (in lower case) prepended by nag , for example,
nag_dpotrf is the long name for f07fdc.

References to Chapter f07 functions in the Manual normally include the LAPACK double precision names,
for example, nag_dgetrf (f07adc).

The LAPACK function names follow a simple scheme (which is similar to that used for the BLAS in
Chapter f16). FEach name has the structure XYYZZZ, where the components have the following
meanings:

— the initial letter X indicates the data type (real or complex) and precision:
S — real, single precision
D - real, double precision
C — complex, single precision
Z — complex, double precision
— the 2nd and 3rd letters YY indicate the type of the matrix A (and in some cases its storage scheme):
GE - general
GB — general band
PO — symmetric or Hermitian positive-definite
PP — symmetric or Hermitian positive-definite (packed storage)
PB — symmetric or Hermitian positive-definite band
SY — symmetric indefinite
SP — symmetric indefinite (packed storage)
HE — (complex) Hermitian indefinite
HP — (complex) Hermitian indefinite (packed storage)
TR — triangular
TP — triangular (packed storage)
TB — triangular band
— the last 3 letters ZZZ indicate the computation performed:
TRF — triangular factorization
TRS — solution of linear equations, using the factorization
CON - estimate condition number
RFS — refine solution and compute error bounds
TRI — compute inverse, using the factorization

Thus the function SGETRF performs a triangular factorization of a real general matrix in a single precision
implementation; the corresponding function in a double precision implementation is DGETRF.

[NP3645/7] 7.7

Introduction — f07 NAG C Library Manual

3.3 Matrix Storage Schemes

In this chapter the following different storage schemes are used for matrices:
— conventional storage;
— packed storage for symmetric, Hermitian or triangular matrices;
— band storage for band matrices.

These storage schemes are compatible with those used in Chapter f16 (especially in the BLAS) and
Chapter f08, but different schemes for packed or band storage are used in a few older functions
in Chapters 101, 02, f03 and f04.

In the examples below, * indicates an array element which need not be set and is not referenced by the
functions. The examples illustrate only the relevant part of the arrays; array arguments may of course have
additional rows or columns, according to the usual rules for passing array arguments in C or Fortran 77.

3.3.1 Conventional storage

Matrices may be stored column-wise or row-wise as described in Section 2.2.1.4 of the Essential
Introduction: a matrix A is stored in a one-dimensional array a, with matrix element a, ; stored column-
wise in array element a[(j — 1) x pda + ¢ — 1] or row-wise in array element a[(i — 1) x pda + j — 1]
where pda is the principle dimension of the array (i.e., the stride separating row or column elements of the
matrix respectively). Most functions in this chapter contain the order argument which can be set to
Nag ColMajor for column-wise storage or Nag RowMajor for row-wise storage of matrices. Where
groups of functions are intended to be used together, the value of the order argument passed must be

consistent throughout.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * in the examples below.

For example, when n = 3:

order uplo Triangular matrix A4 Storage in array a
Nag_ColMajor | Nag_ Upper ap G ap app * *apy Gy * a3 g3 433
Gz a3
as3
Nag RowMajor | Nag Upper a;; Gy a3 Q1] Gy Q13 * G Qp3 * * 433
Qa3
ass
Nag ColMajor | Nag Lower an Q1] Qpp A3 * Qpy U3y * * 33
az1 A
asz; Az as3
Nag RowMajor | Nag Lower ap; Q1] * * Ay Aoy * Q3] A3y (33
az A
asz; Az as;

Functions which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set.

107.8 [NP3645/7]

f07 — Linear Equations (LAPACK) Introduction — 07

For example, when n = 3:

order uplo Hermitian matrix 4 Storage in array a

Nag ColMajor | Nag Upper aj;; ap ap a1 * % Qpp Ay * Q3 A3 A33
G Gy ay
a3 Q3 ass

Nag RowMajor | Nag Upper aj; Qa3 Q11 Qa2 Q3 % Qpp Qp3 * * A33
G Gp ap
a3 a3 Az3

Nag ColMajor | Nag Lower aj; Gy Qs Q) Az Q3] * Qpp A3p * * 433
Gy Gy Q3
azy Gzp Aasz3

Nag RowMajor | Nag Lower ay; Gy Q3 Qayp * k Qg Gyy * A3y A3y 433

Gy Ay 03
azyp Gzp Aasz3

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle (again
as specified by uplo) is packed by columns or rows in a one-dimensional array. In Chapters f07 and 08,
arrays which hold matrices in packed storage have names ending in p. The storage of matrix elements a; ;
are stored in the packed array ap as follows:

if uplo = Nag_Upper then
if order = Nag_ColMajor, a,; is stored in ap[(i — 1) + j(j — 1)/2] for i < j;
if order = Nag_ RowMajor, a;; is stored in ap[(j — 1) + (2n —i)(i — 1)/2] for i <.
if uplo = Nag_Lower then
if order = Nag_ColMajor, a;; is stored in ap[(i — 1) + (2n — j)(j — 1)/2] for j <.
if order = Nag RowMajor, a;; is stored in ap[(j — 1) +i(i — 1)/2] for j < i;

For example:

order uplo Triangle of matrix 4 | Packed storage in array ap

Nag ColMajor | Nag Upper aj; Qa3 ajp QG @13G23033
Ay Q3

ass

11012013 Q2073 A33

————

Gapy A3
ass

Nag ColMajor | Nag Lower a a11021a31 A220Q3 A33
ay; Ap

az; Gz azz

Nag RowMajor | Nag Lower a Ay Gp1Qpy 31033 A33
—— ——

53 I 5)
az; Gz a3z

Nag_RowMajor | Nag Upper (a” a;, ap

[NP3645/7] 107.9

Introduction — f07 NAG C Library Manual

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements are
conjugated.)

3.3.3 Band storage

A band matrix with k; sub-diagonals and k, super-diagonals may be stored compactly in a notional two-
dimensional array with k; + &, + 1 rows and n columns if stored column-wise or n rows and k; + k, + 1
columns if stored row-wise. In column-major order, elements of a column of the matrix are stored
contiguously in the array, and elements of the diagonals of the matrix are stored with constant stride (i.e.,
in a row of the two-dimensional array). In row-major order, elements of a row of the matrix are stored
contiguously in the array, and elements of a diagonal of the matrix are stored with constant stride (i.e., in a
column of the two-dimensional array). These storage schemes should only be used in practice if &,
k, < n, although the functions in Chapter f07 and Chapter f08 work correctly for all values of k; and k,.
In Chapter f07 and Chapter fO8 arrays which hold matrices in band storage have names ending in b.

To be precise, elements of matrix elements a;; are stored as follows:
if order = Nag_ColMajor, a;; is stored in ab[(k, + i — j) x pdab + j];
if order = Nag_RowMajor, a;; is stored in ab[(k; 4 j — i) x pdab +];

where pdab >k +k,+1 is the stride between diagonal elements and where
max (1,7 — k) < j < min(n,i+ k,).

For example, when n =35, k, =2 and k, = 1:

Band matrix 4 Band storage in array ab

order = Nag_ColMajor | order = Nag_RowMajor

app ap * A2 Gp3 Q34 Qys * * app ap
Qy; Gy Gp3 ayp Gy Q33 Q44 G55 * Qy; Gy Gp3
az; Gz Q33 A3y A1 A3y Q43 Asq X az; Qzy A3z 434
gy Q43 Q44 Q45 azp Q4p As3 ¥ * A4y Q43 Q44 Q45

Q53 Qs4 Qss As3 Q54 Q55 %

The elements marked * in the upper left and lower right corners of the array ab need not be set, and are
not referenced by the functions.

Note: when a general band matrix is supplied for LU factorization, space must be allowed to store an
additional k; super-diagonals, generated by fill-in as a result of row interchanges. This means that the
matrix is stored according to the above scheme, but with k; + k, super-diagonals.

Triangular band matrices are stored in the same format, with either k; = 0 if upper triangular, or &k, = 0 if
lower triangular.

For symmetric or Hermitian band matrices with k sub-diagonals or super-diagonals, only the upper or
lower triangle (as specified by uplo) need be stored:

if uplo = Nag_Upper then
if order = Nag_ColMajor, a;; is stored in ab[(j — 1) x pdab + k + i — j].
if order = Nag_RowMajor, q,; is stored in ab[(i — 1) x pdab + j — i].
for max(1,7— k) <i <yj;
if uplo = Nag_Lower then
;; is stored in ab[(j — 1) x pdab +i — j].

if order = Nag_RowMajor, q;; is stored in ab[(i — 1) x pdab + k + j — i].

if order = Nag_ColMajor, a

for j <4 < min(n,j+ k);

107.10 [NP3645/7]

f07 — Linear Equations (LAPACK) Introduction — 07

where pdab > k + 1 is the stride separating diagonal matrix elements in the array ab.

For example, when n =5 and k = 2:

uplo Hermitian band matrix 4 Band storage in array a
order = Nag_ColMajor | order = Nag_RowMajor

Nag_Upper ap; app a3 * * a3 Gys Aa3s app app apg
Gy Gy Gy Ay * Ay Gp3 Q34 Q45 Ay Gp3 G4
Q13 Qp3 Q33 Q34 (35 a1y Gy Q33 Q44 Qss 033 Q34 Q35

Qr4 Q34 Qgq Q4 Qg4 Q45 %

G35 Q45 Qss ass * *
Nag_Lower ayy Gy Q3 ajp Gxp Q33 Qg4 Gss * * ayy
Gy Gy Q3 Qg Gy Q3 Qg3 Qsq % * ax; Qxp
a3] a3z (33 G433 Q53 azp Q4p As3 X * azy Az 0433
Qg Q43 Q44 G54 Qg Q43 Gyq
s3G54 Qss Aas3 QG54 Qs5

Note that different storage schemes for band matrices are used by some functions in Chapter f01,
Chapter 103, Chapter f03 and Chapter {04.

3.3.4 Unit triangular matrices

Some functions in this chapter have an option to handle unit triangular matrices (that is, triangular matrices
with diagonal elements = 1). This option is specified by an argument diag. If diag = Nag_UnitDiag
(Unit triangular), the diagonal elements of the matrix need not be stored, and the corresponding array
elements are not referenced by the functions. The storage scheme for the rest of the matrix (whether
conventional, packed or band) remains unchanged.

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal elements that are by definition purely real. In addition,
complex triangular matrices which arise in Cholesky factorization are defined by the algorithm to have real
diagonal elements.

If such matrices are supplied as input to functions in this chapter, the imaginary parts of the diagonal
elements are not referenced, but are assumed to be zero. If such matrices are returned as output by the
functions, the computed imaginary parts are explicitly set to zero.

3.4 Parameter Conventions
3.4.1 Option parameters

In addition to the order argument of type Nag_ OrderType, most functions in this Chapter have one or
more option arguments of various types; only options of the correct type may be supplied.

For example,

f07fdc (Nag_RowMajor,Nag_Upper,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, m, n or nrhs) to be passed as zero, in which
case the computation (or part of it) is skipped. Negative dimensions are regarded as an error.

[NP3645/7] f07.11

Introduction — f07 NAG C Library Manual

3.5 Tables of Available Functions

Type of matrix and storage scheme factorize | solve condition | error invert
number estimate

general f07adc fO7aec | f07agc f07ahc | £07ajc
DGETRF DGETRS | DGECON DGERFS | DGETRI

general band f07bdc | £07bec | £07bgc f07bhc
DGBTRF DGBTRS | DGBCON DGBRFS

symmetric positive-definite f07fdc | £07fec | £07fgc f07fhc | £07fjc
DPOTRF DPOTRS | DPOCON DPORFS | DPOTRI

symmetric positive-definite (packed storage) | £07gdc | £07gec | £07ggc f07ghc | £07gjc
DPPTRF DPPTRS | DPPCON DPPRFS DPPTRI

symmetric positive-definite band f07hdc | £07hec | £07hgc f07hhc
DPBTRF DPBTRS | DPBCON DPBRFS

symmetric indefinite fO07mdc | £07mec | £07mgc fO07mhc | £07mjc
DSYTRF DSYTRS | DSYCON DSYRFS DSYTRI

symmetric indefinite (packed storage) f07pdc | £07pec | £07pgc f07phc | £07pjc
DSPTRF DSPTRS | DSPCON DSPRFS | DSPTRI

triangular fO7tec | £07tgc f07thc | £07tjc
DTRTRS | DTRCON DTRRFS | DTRTRI

triangular (packed storage) f07uec | £07ugc fO07uhc | £07ujc
DTPTRS | DTPCON DTPRFS DTPTRI

triangular band f07vec | £07vgc f07vhce
DTBTRS | DTBCON DTBRFS

Table 1
Functions for real matrices

Each entry gives:

the NAG function short name
the LAPACK function name from which the NAG function long name is derived by prepending
nag_.

07.12 [NP3645/7]

f07 — Linear Equations (LAPACK) Introduction — 07

Type of matrix and storage scheme factorize | solve condition | error invert
number estimate

general f07arc f07asc | f07auc f07avc | £07awc
ZGETRF ZGETRS | ZGECON ZGERFS | ZGETRI

general band fO7brc | £07bsc | £07buc f07bvce
ZGBTRF ZGBTRS | ZGBCON ZGBRFS

Hermitian positive-definite f07frc | £07fsc | £07fuc f07fvc | £07fwc
ZPOTRF ZPOTRS | ZPOCON ZPORFS ZPOTRI

Hermitian positive-definite (packed storage) | £07grc | £07gsc | £07guc f07gvc | £07guc
ZPPTRF ZPPTRS | ZPPCON ZPPRFS ZPPTRI

Hermitian positive-definite band fO07hrc | £07hsc | £07huc f07hvc
ZPBTRF ZPBTRS | ZPBCON ZPBRFS

Hermitian indefinite fO07mrc fO07msc | £07muc fO7mvc fO7mwc
ZHETRF ZHETRS | ZHECON ZHERFS ZHETRI

symmetric indefinite f07nrc f07nsc | £07nuc f07nvc | £07nwc
ZSYTRF ZSYTRS | ZSYCON ZSYRFS ZSYTRI

Hermitian indefinite (packed storage) fO7prc | £07psc | £07puc f07pve | £f07pwc
ZHPTRF ZHPTRS | ZHPCON ZHPRFS ZHPTRI

symmetric indefinite (packed storage) f07qrc | £07gsc | £07quc f07qvc | £07quc
ZSPTRF ZSPTRS | ZSPCON ZSPRFS ZSPTRI

triangular f07tsc | £07tuc f07tve | £07twc
ZTRTRS | ZTRCON ZTRRFS ZTRTRI

triangular (packed storage) f07usc | £07uuc f07uvc | £07uwc
ZTPTRS | ZTPCON ZTPRFS ZTPTRI

triangular band f07vsc | £07vuc f07vvce
ZTBTRS | ZTBCON ZTBRFS

Table 2
Functions for complex matrices

Each entry gives:

the NAG function short name
the LAPACK function name from which the NAG function long name is derived by prepending
nag_.

[NP3645/7] 107.13

Introduction — f07

4 Index

Apply iterative refinement to the solution and compute error estimates:
after factorizing the matrix of coefficients:
complex band MAIIXccccccveriieiiieniiieienie ettt eae e esreeeree e
complex Hermitian indefinite matriXcccccooviieiieriieeiienieeie e
complex Hermitian indefinite matrix, packed storageccccocveevrvennene
complex Hermitian positive-definite band matriXccccccevervierenieniennenne.
complex Hermitian positive-definite matrixc.ccocceevieviieeviienienireeneennn,
complex Hermitian positive-definite matrix, packed storagec..cc......
1670 1010] 15 € 1112 b QOSSR
complex symmetric indefinite MatriXccccevvieriiecierierieeierene e e
complex symmetric indefinite matrix, packed storagecccoecveevervenncne
real band MALIIXcccooveriiiiiriiieieceeeese ettt
1AL MALIIX .eviriiiiiiiiiiierce ettt ennen
real symmetric indefinite MatriXcccceviveiiieiiieiie e
real symmetric indefinite matrix, packed storageccccevvveieevriieneennne
real symmetric positive-definite band matriXcccceeeieiienieciiniereneene
real symmetric positive-definite MatrixXccoeceevivvierieeriinieneeeeie e
real symmetric positive-definite matrix, packed storagec.ccccccevuennee.
Compute error estimates:
complex triangular band MAatriXcccooiieriiiiiiieeiiee e
compleX triangular MALIIX ...c.occveveeeieiiienieeierieieseere et sreere e e e e aesseebesseenseeens
complex triangular matrix, packed StOTageccccevveevierieieeieneeieeeieeeee e
real triangular band MatriXccoccovieiiiienieie et
real trianguIAr MAIXccoeeeieiieeeieeie et eie e eee et e et e b e esseesbeeseenseessseenes
real triangular matrix, packed StOTAZEcccoovveiieiiiieiiiiiiee e
Condition number estimation:
after factorizing the matrix of coefficients:
compleX Dand MALTIXccoceeeiiiieriieieeee e et
complex Hermitian indefinite MatriX,cccoceevieevierierienienieneeie e
complex Hermitian indefinite matrix, packed storageccccoveeirvvennnne
complex Hermitian positive-definite band matriXcccccceeceeveenerienieenenn.
complex Hermitian positive-definite Matrixcccooceeverieneeiiecienierieeeenn,
complex Hermitian positive-definite matrix, packed storagec.c..c....
COMPIEX MALIIX .eviiiieeiiiiiieeiiesiteeteeeteeteereeeteesseeseseessaessseessseesseesseesssesssennsns
complex symmetric indefinite MatriX,cccccceevveeciieniieerierie e
complex symmetric indefinite matrix, packed storageccccccovevirrnnne
real DAnd MALTIXocieoiiiieiiieiece ettt steeae e e steensesaeennen
TEAL MALIIX .eveitiiiiiiiitiiteitcet ettt ettt aenees
real symmetric indefinite MAatriXcccccevviieiieiiieiiie e
real symmetric indefinite matrix, packed Storagec.ccccevvevviviriienennene
real symmetric positive-definite band matriXcccoceeeevievieciiniecieieens
real symmetric positive-definite MatrixXccoceeeieeieriieciinienieeeee e
real symmetric positive-definite matrix, packed storagecccceevereenene
complex triangular band MatriXccccecceevierierienieneeie e
compleX triangular MALIIXocceerieriirierieeieseeet ettt
complex triangular matrix, packed StOragecccoveevievveereeieneeierieeieeeeie e
real triangular band MAtriXcccccoevieieiienieie e
real triangUIAr MALIIX ...occoeoeeieriieie ettt et sttt te et e sbe e eneeens
real triangular matrix, packed StOragecccocieveriierieienieieee e
LL? or U"U factorization:
complex Hermitian positive-definite band matrixccccceeevevievieneecieniennne.
complex Hermitian positive-definite matriXcccceccervieveeieniiniieneeieseeieene
complex Hermitian positive-definite matrix, packed storagecccecuenenne.
LL” or UTU factorization:
real symmetric positive-definite band matriXccccocceeveriiereniieneeee e
real symmetric positive-definite MatrixXcocceeveriieririieniienereeee e
real symmetric positive-definite matrix, packed storagecccevveevvrceennene

107.14

NAG C Library Manual

nag_zgbrfs (£07bvc)
nag_zherfs (£07mvc)
nag_zhprfs (£07pvc)
nag_zpbrfs (£07hvc)
nag_zporfs (£07fvc)
nag_zpprfs (£07gvc)
nag_zgerfs (f07avc)
nag_zsyrfs (£07nvc)
nag_zsprfs (£07qvc)
nag_dgbrfs (£07bhc)
nag_dgerfs (£07ahc)
nag_dsyrfs (£07mhc)
nag_dsprfs (£07phc)
nag_dpbrfs (£07hhc)
nag_dporfs (£07fhc)
nag_dpprfs (£07ghc)

nag_ztbrfs (£07vvc)
nag_ztrrfs (£07tvc)
nag_ztprfs (£07uvc)
nag_dtbrfs (£07vhc)
nag_dtrrfs (£07thc)
nag_dtprfs (£07uhc)

nag_zgbcon (£07buc)
nag_zhecon (£07muc)
nag_zhpcon (£07puc)
nag_zpbcon (£07huc)
nag_zpocon (£f07fuc)
nag_zppcon (£07guc)
nag_zgecon (f07auc)
nag_zsycon (£07nuc)
nag_zspcon (£07quc)
nag_dgbcon (£07bgc)
nag_dgecon (£07agc)
nag_dsycon (£07mgc)
nag_dspcon (£07pgc)
nag_dpbcon (£f07hgc)
nag_dpocon (£07fgc)
nag_dppcon (£f07ggc)
nag_ztbcon (£07vuc)
nag_ztrcon (£07tuc)
nag_ztpcon (£07uuc)
nag_dtbcon (£07vgc)
nag_dtrcon (£f07tgc)
nag_dtpcon (£f07ugc)

nag_zpbtrf (£07hrc)
nag_zpotrf (£07frc)
nag_zpptrf (£07grc)

nag_dpbtrf (£f07hdc)

nag_dpotrf (£07fdc)
nag_dpptrf (£07gdc)

[NP3645/7]

f07 — Linear Equations (LAPACK) Introduction — 07

LU factorization:

compleX Dand MALTIX ...cc.ocieiiiieriieieeiee ettt st nag_zgbtrf
COMPIEX MALITX .eveviiiriiriiriiriceieeiteeeieettete sttt ettt ettt st et sbe st et ae e b nne s nag_zgetrf
real DANd MALTIX ...ooviiiiiiiieie ettt nag_dgbtrf
TEAL MALITX oottt ettt et b et et sbe et st nbe e nag_dgetrf

Matrix inversion:
after factorizing the matrix of coefficients:

complex Hermitian indefinite MatrixXcccocerieevienierienieninieeie e nag_zhetri
complex Hermitian indefinite matrix, packed storageccccovevvverennnne nag_zhptri
complex Hermitian positive-definite matrixcccocevvenienenieienennenenn nag_zpotri
complex Hermitian positive-definite matrix, packed storage nag_zpptri
COMPIEX MALITX .eveiiiiieiieiieiieiieiiete ettt ettt ettt ebe et be b ebe b nag_zgetri
complex symmetric indefinite MAatriXcceccerveerieeiienienienierene e nag_zsytri
complex symmetric indefinite matrix, packed storagecccecvevereenncne nag_zsptri
TEAL MALITX .eeeiiiieiieiiete ettt ettt ettt ettt ene s nag_dgetri
real symmetric indefinite MAtriXcccooveeverrieriieniinieneeeeeereeee e nag_dsytri
real symmetric indefinite matrix, packed Storagecccccovvvevieciinienieennnne nag_dsptri
real symmetric positive-definite MatrixXccooceevereierierienieneeeeie e nag_dpotri
real symmetric positive-definite matrix, packed storagecccccevereenen. nag_dpptri
complex triangular MALIIXccccccviiieiiiierieeceeieesteeieesreeieesseesveereesreessseenes nag_ztrtri
complex triangular matrix, packed StOTageccccceeviieeeieiiirenierie e nag_ztptri
real triangular MALEIXoccooeiiriiieeee ettt sb e ne nag_dtrtri
real triangular matrix, packed StOragecccoceceevierieiienieeee e nag_dtptri
PLDL” P or PUDU" P! factorization:
complex Hermitian indefinite MatriXccccoceeverviriinieniinieniienenese e nag_zhetrf
complex Hermitian indefinite matrix, packed storageccccecceveievvecienncnne. nag_zhptrf
PLDL” P” or PUDU” P” factorization:
complex symmetric indefinite MAatriXccocevveriririirienieine e nag_zsytrf
complex symmetric indefinite matrix, packed storageccccceeervevieevennenne. nag_zsptrf
real symmetric iNdefinite MALIIXccccceveeriieierieie et nag_dsytrf
real symmetric indefinite matrix, packed storageccccceevervievienieieniennenne. nag_dsptrf

Solution of simultaneous linear equations:
after factorizing the matrix of coefficients:

compleX Dand MALTIXcoocieeierierieeiee ettt e nag_zgbtrs
complex Hermitian indefinite MatrixXccccocevieevierienienieniineeie e nag_zhetrs
complex Hermitian indefinite matrix, packed storagec..cccoceevvvvvenncnne nag_zhptrs
complex Hermitian positive-definite band matrixcccccceeeveevinincnennns nag_zpbtrs
complex Hermitian positive-definite matrixcccoceeveniinenieenenennenenn nag_zpotrs
complex Hermitian positive-definite matrix, packed storage nag_zpptrs
COMPIEX MALITX .evetieiieiieiieiieiietietet ettt ettt ettt ebe et ebe bbb b b nag_zgetrs
complex symmetric indefinite MAatriXcceccevveerieriierierienienee e nag_zsytrs
complex symmetric indefinite matrix, packed storagecccccccvevverninne nag_zsptrs
complex triangular band MatriXcccccoovieiieniiieiiee e nag_ztbtrs
compleX triangular MALIIXcccveeveeeierieeieieerie e eee et eie e sie e e steeeeseeeeeenes nag_ztrtrs
complex triangular matrix, packed Storageccoccevvievercienieceecienieeeenn nag_ztptrs
real Dand MALTIXocieoiiiieiieieeieie ettt et nag_dgbtrs
TEAL MALTTX .eeiuiiiieiiieiet ettt ettt ettt e s et e b e ent e st enbesneenean nag_dgetrs
real symmetric indefinite MAtrIXcccooveeviierierienieniereee e nag_dsytrs
real symmetric indefinite matrix, packed storageccccoevveeieciiriienieennnne nag_dsptrs
real symmetric positive-definite band matriXcccceevieiierieiieniereeeenne nag_dpbtrs
real symmetric positive-definite MatrixXcceceevervierieniinienieeeeie e nag_dpotrs
real symmetric positive-definite matrix, packed storageccccceevreenen. nag_dpptrs
real triangular MAIIX ...oocoocieoiirieie et nag_dtrtrs
real triangular matrix, packed StOTAZEcccccoviieiiiiiiieniieiieeeeee e nag_dtptrs
triangular band MatriXcoocoeveiieiiiiiee e nag_dtbtrs

[NP3645/7]

(f07brc)
(fO07arc)
(£07bdc)
(f07adc)

(£07mwc)
(£07pwc)
(£07fwc)
(£07gwc)
(£f07awc)
(£07nwc)
(£f07qwc)
(f07ajc)
(£07mjc)
(£07pjc)
(£07£fjc)
(£07gjc)
(£07twc)
(£f07uwc)
(£07tjc)
(£07ujc)

(f07mrc)
(£07prc)

(£07nrc)
(£07qrc)
(£f07mdc)
(£07pdc)

(f07bsc)
(f07msc)
(£f07psc)
(f07hsc)
(f07fsc)
(£07gsc)
(f07asc)
(f07nsc)
(£07gsc)
(f07vsc)
(£f07tsc)
(f0T7usc)
(£07bec)
(f0T7aec)
(f07mec)
(£07pec)
(f07hec)
(fo7fec)
(f07gec)
(f07tec)
(f0T7uec)
(£f07vec)

107.15

Introduction — f07 NAG C Library Manual

5 Functions Withdrawn or Scheduled for Withdrawal

None.

6 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Higham N J (1988) Algorithm 674: Fortran codes for estimating the one-norm of a real or complex matrix,
with applications to condition estimation ACM Trans. Math. Sofiware 14 381-396

107.16 (last) [NP3645/7]

	f07 Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Notation
	2.2 Matrix Factorizations
	2.3 Solution of Systems of Equations
	2.4 Sensitivity and Error Analysis
	2.4.1 Normwise error bounds
	2.4.2 Estimating condition numbers
	2.4.3 Componentwise error bounds
	2.4.4 Iterative refinement of the solution

	2.5 Matrix Inversion
	2.6 Packed Storage
	2.7 Band Matrices
	2.8 Block Algorithms

	3 Recommendations on Choice and Use of Available Functions
	3.1 Available s
	3.2 NAG Names and LAPACK Names
	3.3 Matrix Storage Schemes
	3.3.1 Conventional storage
	3.3.2 Packed storage
	3.3.3 Band storage
	3.3.4 Unit triangular matrices
	3.3.5 Real diagonal elements of complex matrices

	3.4 Parameter Conventions
	3.4.1 Option parameters
	3.4.2 Problem dimensions

	3.5 Tables of Available s

	4 Index
	5 Functions Withdrawn or Scheduled for Withdrawal
	6 References

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

