
NAG C Library Chapter Introduction

f07 – Linear Equations (LAPACK)

Contents

1 Scope of the Chapter . 2

2 Background to the Problems . 2

2.1 Notation . 2

2.2 Matrix Factorizations . 3

2.3 Solution of Systems of Equations . 3

2.4 Sensitivity and Error Analysis . 3

2.4.1 Normwise error bounds . 3
2.4.2 Estimating condition numbers . 4
2.4.3 Componentwise error bounds . 4
2.4.4 Iterative refinement of the solution . 4

2.5 Matrix Inversion . 5

2.6 Packed Storage . 5

2.7 Band Matrices . 5

2.8 Block Algorithms . 6

3 Recommendations on Choice and Use of Available Functions 6

3.1 Available Functions . 6

3.2 NAG Names and LAPACK Names . 7

3.3 Matrix Storage Schemes . 8

3.3.1 Conventional storage . 8
3.3.2 Packed storage . 9
3.3.3 Band storage . 10
3.3.4 Unit triangular matrices . 11
3.3.5 Real diagonal elements of complex matrices . 11

3.4 Parameter Conventions . 11

3.4.1 Option parameters . 11
3.4.2 Problem dimensions . 11

3.5 Tables of Available Functions . 12

4 Index . 14

5 Functions Withdrawn or Scheduled for Withdrawal 16

6 References . 16

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3645/7] f07.1

1 Scope of the Chapter

This chapter provides functions for the solution of systems of simultaneous linear equations, and associated
computations. It provides functions for

– matrix factorizations;

– solution of linear equations;

– estimating matrix condition numbers;

– computing error bounds for the solution of linear equations;

– matrix inversion.

Functions are provided for both real and complex data.

For a general introduction to the solution of systems of linear equations, you should turn first to the f04
Chapter Introduction. The decision trees, at the end of the f04 Chapter Introduction, direct you to the most
appropriate functions in Chapter f04 or Chapter f07 for solving your particular problem. In particular,
Chapter f04 contains Black Box functions which enable some standard types of problem to be solved by a
call to a single function. Where possible, functions in Chapter f04 call Chapter f07 functions to perform
the necessary computational tasks.

The functions in this chapter (Chapter f07) handle only dense and band matrices (not matrices with more
specialized structures, or general sparse matrices).

The functions in this chapter have all been derived from the LAPACK project (see Anderson et al. (1999)).
They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of systems of linear equations. Consult a
standard textbook, for example Golub and Van Loan (1996) for a more thorough discussion.

2.1 Notation

We use the standard notation for a system of simultaneous linear equations:

Ax ¼ b ð1Þ
where A is the coefficient matrix, b is the right-hand side, and x is the solution. A is assumed to be a
square matrix of order n.

If there are several right-hand sides, we write

AX ¼ B ð2Þ
where the columns of B are the individual right-hand sides, and the columns of X are the corresponding
solutions.

We also use the following notation, both here and in the function documents:

x̂x a computed solution to Ax ¼ b, (which usually differs from the exact solution x
because of round-off error)

r ¼ b�Ax̂x the residual corresponding to the computed solution x̂x
kxk1 ¼ max

i
jxij the infinity-norm of the vector x

kAk1 ¼ max
i

P
jjaijj the infinity-norm of the vector A

jxj the vector with elements jxij
jAj the matrix with elements jaijj

Inequalities of the form jAj � jBj are interpreted componentwise, that is jaijj � jbijj for all i; j.

Introduction – f07 NAG C Library Manual

f07.2 [NP3645/7]

2.2 Matrix Factorizations

If A is upper or lower triangular, Ax ¼ b can be solved by a straightforward process of backward or
forward substitution.

Otherwise, the solution is obtained after first factorizing A, as follows.

General matrices (LU factorization with partial pivoting)

A ¼ PLU

where P is a permutation matrix, L is lower-triangular with diagonal elements equal to 1, and U is upper-
triangular; the permutation matrix P (which represents row interchanges) is needed to ensure numerical
stability.

Symmetric positive-definite matrices (Cholesky factorization)

A ¼ UTU or A ¼ LLT

where U is upper triangular and L is lower triangular.

Symmetric indefinite matrices (Bunch–Kaufman factorization)

A ¼ PUDUTPT or A ¼ PLDLTPT

where P is a permutation matrix, U is upper triangular, L is lower triangular, and D is a block diagonal
matrix with diagonal blocks of order 1 or 2; U and L have diagonal elements equal to 1, and have 2 by 2
unit matrices on the diagonal corresponding to the 2 by 2 blocks of D. The permutation matrix P (which
represents symmetric row-and-column interchanges) and the 2 by 2 blocks in D are needed to ensure
numerical stability. If A is in fact positive-definite, no interchanges are needed and the factorization

reduces to A ¼ UDUT or A ¼ LDLT with diagonal D, which is simply a variant form of the Cholesky
factorization.

2.3 Solution of Systems of Equations

Given one of the above matrix factorizations, it is straightforward to compute a solution to Ax ¼ b by
solving two subproblems, as shown below, first for y and then for x. Each subproblem consists essentially
of solving a triangular system of equations by forward or backward substitution; the permutation matrix P
and the block diagonal matrix D introduce only a little extra complication:

General matrices (LU factorization)

Ly ¼ PTb
Ux ¼ y

Symmetric positive-definite matrices (Cholesky factorization)

UTy ¼ b
Ux ¼ y

or
Ly ¼ b
LTx ¼ y

Symmetric indefinite matrices (Bunch–Kaufman factorization)

PUDy ¼ b
UTPTx ¼ y

or
PLDy ¼ b
LTPTx ¼ y

2.4 Sensitivity and Error Analysis

2.4.1 Normwise error bounds

Frequently, in practical problems the data A and b are not known exactly, and it is then important to
understand how uncertainties or perturbations in the data can affect the solution.

If x is the exact solution to Ax ¼ b, and xþ �x is the exact solution to a perturbed problem
ðAþ �AÞðxþ �xÞ ¼ ðbþ �bÞ, then

k�xk
kxk � �ðAÞ k�Ak

kAk þ k�bk
kbk

��
þ � � � ð2nd-order termsÞ

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3645/7] f07.3

where �ðAÞ is the condition number of A defined by

�ðAÞ ¼ kAk:kA�1k: ð3Þ
In other words, relative errors in A or b may be amplified in x by a factor �ðAÞ. Section 2.4.2 discusses
how to compute or estimate �ðAÞ.
Similar considerations apply when we study the effects of rounding errors introduced by computation in
finite precision. The effects of rounding errors can be shown to be equivalent to perturbations in the

original data, such that
k�Ak
kAk and

k�bk
kbk are usually at most pðnÞ�, where � is the machine precision and

pðnÞ is an increasing function of n which is seldom larger than 10n (although in theory it can be as large

as 2n�1).

In other words, the computed solution x̂x is the exact solution of a linear system ðAþ �AÞx̂x ¼ bþ �b
which is close to the original system in a normwise sense.

2.4.2 Estimating condition numbers

The previous section has emphasized the usefulness of the quantity �ðAÞ in understanding the sensitivity
of the solution of Ax ¼ b. To compute the value of �ðAÞ from equation (3) is more expensive than
solving Ax ¼ b in the first place. Hence it is standard practice to estimate �ðAÞ, in either the 1-norm or

the 1 norm, by a method which only requires Oðn2Þ additional operations, assuming that a suitable
factorization of A is available.

The method used in this chapter is Higham’s modification of Hager’s method (Higham (1988)). It yields
an estimate which is never larger than the true value, but which seldom falls short by more than a factor of
3 (although artificial examples can be constructed where it is much smaller). This is acceptable since it is
the order of magnitude of �ðAÞ which is important rather than its precise value.

Because �ðAÞ is infinite if A is singular, the functions in this chapter actually return the reciprocal of
�ðAÞ.

2.4.3 Componentwise error bounds

A disadvantage of normwise error bounds is that they do not reflect any special structure in the data A and
b – that is, a pattern of elements which are known to be zero – and the bounds are dominated by the
largest elements in the data.

Componentwise error bounds overcome these limitations. Instead of the normwise relative error, we can
bound the relative error in each component of A and b:

max
ijk

j�aijj
jaijj

;
j�bkj
jbkj

��
� !

where the componentwise backward error bound ! is given by

! ¼ max
i

jrij
ðjAj:jx̂xj þ jbjÞi

:

Functions are provided in this chapter which compute !, and also compute a forward error bound which is
sometimes much sharper than the normwise bound given earlier:

kx� x̂xk1
kxk1

� kjA�1j:jrjk1
kxk1

:

Care is taken when computing this bound to allow for rounding errors in computing r. The norm

kjA�1j:jrjk1 is estimated cheaply (without computing A�1) by a modification of the method used to

estimate �ðAÞ.

2.4.4 Iterative refinement of the solution

If x̂x is an approximate computed solution to Ax ¼ b, and r is the corresponding residual, then a procedure
for iterative refinement of x̂x can be defined as follows, starting with x0 ¼ x̂x:

Introduction – f07 NAG C Library Manual

f07.4 [NP3645/7]

for i ¼ 0; 1; . . ., until convergence

compute ri ¼ b�Axi
solve Adi ¼ ri
compute xiþ1 ¼ xi þ di

In Chapter f04, functions are provided which perform this procedure using additional precision to compute
r, and are thus able to reduce the forward error to the level of machine precision.

The functions in this chapter do not use additional precision to compute r, and cannot guarantee a small
forward error, but can guarantee a small backward error (except in rare cases when A is very ill-
conditioned, or when A and x are sparse in such a way that jAj:jxj has a zero or very small component).
The iterations continue until the backward error has been reduced as much as possible; usually only one
iteration is needed, and at most five iterations are allowed.

2.5 Matrix Inversion

It is seldom necessary to compute an explicit inverse of a matrix. In particular, do not attempt to solve

Ax ¼ b by first computing A�1 and then forming the matrix-vector product x ¼ A�1b; the procedure
described in Section 2.3 is more efficient and more accurate.

However, functions are provided for the rare occasions when an inverse is needed, using one of the
factorizations described in Section 2.2.

2.6 Packed Storage

Functions which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If the upper or lower triangle is stored
conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements of the
array can be used to store other useful data. However, that is not always convenient, and if it is important
to economize on storage, the upper or lower triangle can be stored in a one-dimensional array of length
nðnþ 1Þ=2; in other words, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.2. It may also be used
for triangular matrices.

Functions designed for packed storage perform the same number of arithmetic operations as functions
which use conventional storage, but they are usually less efficient, especially on high-performance
computers, so there is then a trade-off between storage and efficiency.

2.7 Band Matrices

A band matrix is one whose non-zero elements are confined to a relatively small number of sub-diagonals
or super-diagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme used for band matrices is described
in Section 3.3.3.

The LU factorization for general matrices, and the Cholesky factorization for symmetric positive-definite
matrices both preserve bandedness. Hence functions are provided which take advantage of the band
structure when solving systems of linear equations.

The Cholesky factorization preserves bandedness in a very precise sense: the factor U or L has the same
number of super-diagonals or sub-diagonals as the original matrix. In the LU factorization, the row-
interchanges modify the band structure: if A has kl sub-diagonals and ku super-diagonals, then L is not a
band matrix but still has at most kl non-zero elements below the diagonal in each column; and U has at
most kl þ ku super-diagonals.

The Bunch–Kaufman factorization does not preserve bandedness, because of the need for symmetric row-
and-column permutations; hence no functions are provided for symmetric indefinite band matrices.

The inverse of a band matrix does not in general have a band structure, so no functions are provided for
computing inverses of band matrices.

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3645/7] f07.5

2.8 Block Algorithms

Many of the functions in this chapter use what is termed a block algorithm. This means that at each major
step of the algorithm a block of rows or columns is updated, and most of the computation is performed by
matrix-matrix operations on these blocks. The matrix-matrix operations are performed by calls to the
Level 3 BLAS (see Chapter f16), which are the key to achieving high performance on many modern
computers. See Golub and Van Loan (1996) or Anderson et al. (1999) for more about block algorithms.

The performance of a block algorithm varies to some extent with the blocksize – that is, the number of
rows or columns per block. This is a machine-dependent parameter, which is set to a suitable value when
the library is implemented on each range of machines. Users of the library do not normally need to be
aware of what value is being used. Different block sizes may be used for different functions. Values in
the range 16 to 64 are typical.

On some machines there may be no advantage from using a block algorithm, and then the functions use an
unblocked algorithm (effectively a blocksize of 1), relying solely on calls to the Level 2 BLAS (see
Chapter f16 again).

3 Recommendations on Choice and Use of Available Functions

3.1 Available Functions

Table 1 and Table 2 in Section 3.5 show the functions which are provided for performing different
computations on different types of matrices. Table 1 shows functions for real matrices; Table 2 shows
functions for complex matrices. Each entry in the table gives the NAG function name, the LAPACK
single precision name, and the LAPACK double precision name (see Section 3.2).

Functions are provided for the following types of matrix:

general

general band

symmetric or Hermitian positive-definite

symmetric or Hermitian positive-definite (packed storage)

symmetric or Hermitian positive-definite band

symmetric or Hermitian indefinite

symmetric or Hermitian indefinite (packed storage)

triangular

triangular (packed storage)

triangular band

For each of the above types of matrix (except where indicated), functions are provided to perform the
following computations:

(a) (except for triangular matrices) factorize the matrix (see Section 2.2);

(b) solve a system of linear equations, using the factorization (see Section 2.3);

(c) estimate the condition number of the matrix, using the factorization (see Section 2.4.2); these
functions also require the norm of the original matrix (except when the matrix is triangular) which
may be computed by a function in Chapter f16;

(d) refine the solution and compute forward and backward error bounds (see Section 2.4.3 and
Section 2.4.4); these functions require the original matrix and right-hand side, as well as the
factorization returned from (a) and the solution returned from (b);

(e) (except for band matrices) invert the matrix, using the factorization (see Section 2.5).

Thus, to solve a particular problem, it is usually necessary to call two or more functions in succession.
This is illustrated in the example programs in the function documents.

Introduction – f07 NAG C Library Manual

f07.6 [NP3645/7]

3.2 NAG Names and LAPACK Names

As well as the NAG function name (beginning f07-), Table 1 and Table 2 show the LAPACK function
names in both single and double precision.

The functions may be called either by their NAG short names or by their NAG long names. The NAG
long names for a function is simply the LAPACK name (in lower case) prepended by nag_, for example,
nag_dpotrf is the long name for f07fdc.

References to Chapter f07 functions in the Manual normally include the LAPACK double precision names,
for example, nag_dgetrf (f07adc).

The LAPACK function names follow a simple scheme (which is similar to that used for the BLAS in
Chapter f16). Each name has the structure XYYZZZ, where the components have the following
meanings:

– the initial letter X indicates the data type (real or complex) and precision:

S – real, single precision

D – real, double precision

C – complex, single precision

Z – complex, double precision

– the 2nd and 3rd letters YY indicate the type of the matrix A (and in some cases its storage scheme):

GE – general

GB – general band

PO – symmetric or Hermitian positive-definite

PP – symmetric or Hermitian positive-definite (packed storage)

PB – symmetric or Hermitian positive-definite band

SY – symmetric indefinite

SP – symmetric indefinite (packed storage)

HE – (complex) Hermitian indefinite

HP – (complex) Hermitian indefinite (packed storage)

TR – triangular

TP – triangular (packed storage)

TB – triangular band

– the last 3 letters ZZZ indicate the computation performed:

TRF – triangular factorization

TRS – solution of linear equations, using the factorization

CON – estimate condition number

RFS – refine solution and compute error bounds

TRI – compute inverse, using the factorization

Thus the function SGETRF performs a triangular factorization of a real general matrix in a single precision
implementation; the corresponding function in a double precision implementation is DGETRF.

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3645/7] f07.7

3.3 Matrix Storage Schemes

In this chapter the following different storage schemes are used for matrices:

– conventional storage;

– packed storage for symmetric, Hermitian or triangular matrices;

– band storage for band matrices.

These storage schemes are compatible with those used in Chapter f16 (especially in the BLAS) and
Chapter f08, but different schemes for packed or band storage are used in a few older functions
in Chapters f01, f02, f03 and f04.

In the examples below, � indicates an array element which need not be set and is not referenced by the
functions. The examples illustrate only the relevant part of the arrays; array arguments may of course have
additional rows or columns, according to the usual rules for passing array arguments in C or Fortran 77.

3.3.1 Conventional storage

Matrices may be stored column-wise or row-wise as described in Section 2.2.1.4 of the Essential
Introduction: a matrix A is stored in a one-dimensional array a, with matrix element ai;j stored column-

wise in array element a½ðj� 1Þ � pdaþ i� 1� or row-wise in array element a½ði� 1Þ � pdaþ j� 1�
where pda is the principle dimension of the array (i.e., the stride separating row or column elements of the
matrix respectively). Most functions in this chapter contain the order argument which can be set to
Nag_ColMajor for column-wise storage or Nag_RowMajor for row-wise storage of matrices. Where
groups of functions are intended to be used together, the value of the order argument passed must be
consistent throughout.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * in the examples below.

For example, when n ¼ 3:

order uplo Triangular matrix A Storage in array a

Nag_ColMajor Nag_Upper a11 a12 a13
a22 a23

a33

1
A

0
@ a11 � � a12 a22 � a13 a23 a33

Nag_RowMajor Nag_Upper a11 a12 a13
a22 a23

a33

1
A

0
@ a11 a12 a13 � a22 a23 � � a33

Nag_ColMajor Nag_Lower a11
a21 a22
a31 a32 a33

1
A

0
@ a11 a21 a31 � a22 a32 � � a33

Nag_RowMajor Nag_Lower a11
a21 a22
a31 a32 a33

1
A

0
@ a11 � � a21 a22 � a31 a32 a33

Functions which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set.

Introduction – f07 NAG C Library Manual

f07.8 [NP3645/7]

For example, when n ¼ 3:

order uplo Hermitian matrix A Storage in array a

Nag_ColMajor Nag_Upper a11 a12 a13
�aa12 a22 a23
�aa13 �aa23 a33

1
A

0
@ a11 � � a12 a22 � a13 a23 a33

Nag_RowMajor Nag_Upper a11 a12 a13
�aa12 a22 a23
�aa13 �aa23 a33

1
A

0
@ a11 a12 a13 � a22 a23 � � a33

Nag_ColMajor Nag_Lower a11 �aa21 �aa31
a21 a22 �aa32
a31 a32 a33

1
A

0
@ a11 a21 a31 � a22 a32 � � a33

Nag_RowMajor Nag_Lower a11 �aa21 �aa31
a21 a22 �aa32
a31 a32 a33

1
A

0
@ a11 � � a21 a22 � a31 a32 a33

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle (again
as specified by uplo) is packed by columns or rows in a one-dimensional array. In Chapters f07 and f08,
arrays which hold matrices in packed storage have names ending in p. The storage of matrix elements ai;j
are stored in the packed array ap as follows:

if uplo ¼ Nag Upper then

if order ¼ Nag ColMajor, aij is stored in ap½ði� 1Þ þ jðj� 1Þ=2� for i � j;

if order ¼ Nag RowMajor, aij is stored in ap½ðj� 1Þ þ ð2n� iÞði� 1Þ=2� for i � j.

if uplo ¼ Nag Lower then

if order ¼ Nag ColMajor, aij is stored in ap½ði� 1Þ þ ð2n� jÞðj� 1Þ=2� for j � i.

if order ¼ Nag RowMajor, aij is stored in ap½ðj� 1Þ þ iði� 1Þ=2� for j � i;

For example:

order uplo Triangle of matrix A Packed storage in array ap

Nag_ColMajor Nag_Upper a11 a12 a13
a22 a23

a33

1
A

0
@ a11 a12a22|fflffl{zfflffl} a13a23a33|fflfflfflfflffl{zfflfflfflfflffl}

Nag_RowMajor Nag_Upper a11 a12 a13
a22 a23

a33

1
A

0
@ a11a12a13|fflfflfflfflffl{zfflfflfflfflffl} a22a23|fflffl{zfflffl} a33

Nag_ColMajor Nag_Lower a11
a21 a22
a31 a32 a33

1
A

0
@ a11a21a31|fflfflfflfflffl{zfflfflfflfflffl} a22a32|fflffl{zfflffl} a33

Nag_RowMajor Nag_Lower a11
a21 a22
a31 a32 a33

1
A

0
@ a11 a21a22|fflffl{zfflffl} a31a32 a33|fflfflfflfflfflffl{zfflfflfflfflfflffl}

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3645/7] f07.9

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements are
conjugated.)

3.3.3 Band storage

A band matrix with kl sub-diagonals and ku super-diagonals may be stored compactly in a notional two-
dimensional array with kl þ ku þ 1 rows and n columns if stored column-wise or n rows and kl þ ku þ 1
columns if stored row-wise. In column-major order, elements of a column of the matrix are stored
contiguously in the array, and elements of the diagonals of the matrix are stored with constant stride (i.e.,
in a row of the two-dimensional array). In row-major order, elements of a row of the matrix are stored
contiguously in the array, and elements of a diagonal of the matrix are stored with constant stride (i.e., in a
column of the two-dimensional array). These storage schemes should only be used in practice if kl,
ku � n, although the functions in Chapter f07 and Chapter f08 work correctly for all values of kl and ku.
In Chapter f07 and Chapter f08 arrays which hold matrices in band storage have names ending in b.

To be precise, elements of matrix elements aij are stored as follows:

if order ¼ Nag ColMajor, aij is stored in ab½ðku þ i� jÞ � pdabþ j�;

if order ¼ Nag RowMajor, aij is stored in ab½ðkl þ j� iÞ � pdabþ i�;

where pdab � kl þ ku þ 1 is the stride between diagonal elements and where
maxð1; i� klÞ � j � minðn; iþ kuÞ.
For example, when n ¼ 5, kl ¼ 2 and ku ¼ 1:

Band matrix A Band storage in array ab

order ¼ Nag ColMajor order ¼ Nag RowMajor

a11 a12
a21 a22 a23
a31 a32 a33 a34

a42 a43 a44 a45
a53 a54 a55

� a12 a23 a34 a45
a11 a22 a33 a44 a55
a21 a32 a43 a54 �
a31 a42 a53 � �

� � a11 a12
� a21 a22 a23
a31 a32 a33 a34
a42 a43 a44 a45
a53 a54 a55 �

The elements marked � in the upper left and lower right corners of the array ab need not be set, and are
not referenced by the functions.

Note: when a general band matrix is supplied for LU factorization, space must be allowed to store an
additional kl super-diagonals, generated by fill-in as a result of row interchanges. This means that the
matrix is stored according to the above scheme, but with kl þ ku super-diagonals.

Triangular band matrices are stored in the same format, with either kl ¼ 0 if upper triangular, or ku ¼ 0 if
lower triangular.

For symmetric or Hermitian band matrices with k sub-diagonals or super-diagonals, only the upper or
lower triangle (as specified by uplo) need be stored:

if uplo ¼ Nag Upper then

if order ¼ Nag ColMajor, aij is stored in ab½ðj� 1Þ � pdabþ kþ i� j�.

if order ¼ Nag RowMajor, aij is stored in ab½ði� 1Þ � pdabþ j� i�.

for maxð1; j� kÞ � i � j;

if uplo ¼ Nag Lower then

if order ¼ Nag ColMajor, aij is stored in ab½ðj� 1Þ � pdabþ i� j�.

if order ¼ Nag RowMajor, aij is stored in ab½ði� 1Þ � pdabþ kþ j� i�.

for j � i � minðn; jþ kÞ;

Introduction – f07 NAG C Library Manual

f07.10 [NP3645/7]

where pdab � kþ 1 is the stride separating diagonal matrix elements in the array ab.

For example, when n ¼ 5 and k ¼ 2:

uplo Hermitian band matrix A Band storage in array a

order ¼ Nag ColMajor order ¼ Nag RowMajor

Nag_Upper a11 a12 a13
�aa12 a22 a23 a24
�aa13 �aa23 a33 a34 a35

�aa24 �aa34 a44 a45
�aa35 �aa45 a55

1
CCCCA

0
BBBB@

� � a13 a24 a35
� a12 a23 a34 a45
a11 a22 a33 a44 a55

a11 a12 a13
a22 a23 a24
a33 a34 a35
a44 a45 �
a55 � �

Nag_Lower a11 �aa21 �aa31
a21 a22 �aa32 �aa42
a31 a32 a33 �aa43 �aa53

a42 a43 a44 �aa54
a53 a54 a55

1
CCCCA

0
BBBB@

a11 a22 a33 a44 a55
a21 a32 a43 a54 �
a31 a42 a53 � �

� � a11
� a21 a22
a31 a32 a33
a42 a43 a44
a53 a54 a55

Note that different storage schemes for band matrices are used by some functions in Chapter f01,
Chapter f03, Chapter f03 and Chapter f04.

3.3.4 Unit triangular matrices

Some functions in this chapter have an option to handle unit triangular matrices (that is, triangular matrices
with diagonal elements = 1). This option is specified by an argument diag. If diag ¼ Nag UnitDiag
(Unit triangular), the diagonal elements of the matrix need not be stored, and the corresponding array
elements are not referenced by the functions. The storage scheme for the rest of the matrix (whether
conventional, packed or band) remains unchanged.

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal elements that are by definition purely real. In addition,
complex triangular matrices which arise in Cholesky factorization are defined by the algorithm to have real
diagonal elements.

If such matrices are supplied as input to functions in this chapter, the imaginary parts of the diagonal
elements are not referenced, but are assumed to be zero. If such matrices are returned as output by the
functions, the computed imaginary parts are explicitly set to zero.

3.4 Parameter Conventions

3.4.1 Option parameters

In addition to the order argument of type Nag_OrderType, most functions in this Chapter have one or
more option arguments of various types; only options of the correct type may be supplied.

For example,

f07fdc(Nag_RowMajor,Nag_Upper,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, m, n or nrhs) to be passed as zero, in which
case the computation (or part of it) is skipped. Negative dimensions are regarded as an error.

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3645/7] f07.11

3.5 Tables of Available Functions

Type of matrix and storage scheme factorize solve condition
number

error
estimate

invert

general f07adc
DGETRF

f07aec
DGETRS

f07agc
DGECON

f07ahc
DGERFS

f07ajc
DGETRI

general band f07bdc
DGBTRF

f07bec
DGBTRS

f07bgc
DGBCON

f07bhc
DGBRFS

symmetric positive-definite f07fdc
DPOTRF

f07fec
DPOTRS

f07fgc
DPOCON

f07fhc
DPORFS

f07fjc
DPOTRI

symmetric positive-definite (packed storage) f07gdc
DPPTRF

f07gec
DPPTRS

f07ggc
DPPCON

f07ghc
DPPRFS

f07gjc
DPPTRI

symmetric positive-definite band f07hdc
DPBTRF

f07hec
DPBTRS

f07hgc
DPBCON

f07hhc
DPBRFS

symmetric indefinite f07mdc
DSYTRF

f07mec
DSYTRS

f07mgc
DSYCON

f07mhc
DSYRFS

f07mjc
DSYTRI

symmetric indefinite (packed storage) f07pdc
DSPTRF

f07pec
DSPTRS

f07pgc
DSPCON

f07phc
DSPRFS

f07pjc
DSPTRI

triangular f07tec
DTRTRS

f07tgc
DTRCON

f07thc
DTRRFS

f07tjc
DTRTRI

triangular (packed storage) f07uec
DTPTRS

f07ugc
DTPCON

f07uhc
DTPRFS

f07ujc
DTPTRI

triangular band f07vec
DTBTRS

f07vgc
DTBCON

f07vhc
DTBRFS

Table 1
Functions for real matrices

Each entry gives:

the NAG function short name
the LAPACK function name from which the NAG function long name is derived by prepending
nag_.

Introduction – f07 NAG C Library Manual

f07.12 [NP3645/7]

Type of matrix and storage scheme factorize solve condition
number

error
estimate

invert

general f07arc
ZGETRF

f07asc
ZGETRS

f07auc
ZGECON

f07avc
ZGERFS

f07awc
ZGETRI

general band f07brc
ZGBTRF

f07bsc
ZGBTRS

f07buc
ZGBCON

f07bvc
ZGBRFS

Hermitian positive-definite f07frc
ZPOTRF

f07fsc
ZPOTRS

f07fuc
ZPOCON

f07fvc
ZPORFS

f07fwc
ZPOTRI

Hermitian positive-definite (packed storage) f07grc
ZPPTRF

f07gsc
ZPPTRS

f07guc
ZPPCON

f07gvc
ZPPRFS

f07gwc
ZPPTRI

Hermitian positive-definite band f07hrc
ZPBTRF

f07hsc
ZPBTRS

f07huc
ZPBCON

f07hvc
ZPBRFS

Hermitian indefinite f07mrc
ZHETRF

f07msc
ZHETRS

f07muc
ZHECON

f07mvc
ZHERFS

f07mwc
ZHETRI

symmetric indefinite f07nrc
ZSYTRF

f07nsc
ZSYTRS

f07nuc
ZSYCON

f07nvc
ZSYRFS

f07nwc
ZSYTRI

Hermitian indefinite (packed storage) f07prc
ZHPTRF

f07psc
ZHPTRS

f07puc
ZHPCON

f07pvc
ZHPRFS

f07pwc
ZHPTRI

symmetric indefinite (packed storage) f07qrc
ZSPTRF

f07qsc
ZSPTRS

f07quc
ZSPCON

f07qvc
ZSPRFS

f07qwc
ZSPTRI

triangular f07tsc
ZTRTRS

f07tuc
ZTRCON

f07tvc
ZTRRFS

f07twc
ZTRTRI

triangular (packed storage) f07usc
ZTPTRS

f07uuc
ZTPCON

f07uvc
ZTPRFS

f07uwc
ZTPTRI

triangular band f07vsc
ZTBTRS

f07vuc
ZTBCON

f07vvc
ZTBRFS

Table 2
Functions for complex matrices

Each entry gives:

the NAG function short name
the LAPACK function name from which the NAG function long name is derived by prepending
nag_.

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3645/7] f07.13

4 Index

Apply iterative refinement to the solution and compute error estimates:
after factorizing the matrix of coefficients:

complex band matrix ... nag_zgbrfs (f07bvc)
complex Hermitian indefinite matrix .. nag_zherfs (f07mvc)
complex Hermitian indefinite matrix, packed storage nag_zhprfs (f07pvc)
complex Hermitian positive-definite band matrix .. nag_zpbrfs (f07hvc)
complex Hermitian positive-definite matrix ... nag_zporfs (f07fvc)
complex Hermitian positive-definite matrix, packed storage nag_zpprfs (f07gvc)
complex matrix .. nag_zgerfs (f07avc)
complex symmetric indefinite matrix .. nag_zsyrfs (f07nvc)
complex symmetric indefinite matrix, packed storage nag_zsprfs (f07qvc)
real band matrix ... nag_dgbrfs (f07bhc)
real matrix .. nag_dgerfs (f07ahc)
real symmetric indefinite matrix ... nag_dsyrfs (f07mhc)
real symmetric indefinite matrix, packed storage .. nag_dsprfs (f07phc)
real symmetric positive-definite band matrix ... nag_dpbrfs (f07hhc)
real symmetric positive-definite matrix ... nag_dporfs (f07fhc)
real symmetric positive-definite matrix, packed storage nag_dpprfs (f07ghc)

Compute error estimates:
complex triangular band matrix ... nag_ztbrfs (f07vvc)
complex triangular matrix .. nag_ztrrfs (f07tvc)
complex triangular matrix, packed storage .. nag_ztprfs (f07uvc)
real triangular band matrix ... nag_dtbrfs (f07vhc)
real triangular matrix .. nag_dtrrfs (f07thc)
real triangular matrix, packed storage ... nag_dtprfs (f07uhc)

Condition number estimation:
after factorizing the matrix of coefficients:

complex band matrix ... nag_zgbcon (f07buc)
complex Hermitian indefinite matrix, ... nag_zhecon (f07muc)
complex Hermitian indefinite matrix, packed storage nag_zhpcon (f07puc)
complex Hermitian positive-definite band matrix .. nag_zpbcon (f07huc)
complex Hermitian positive-definite matrix ... nag_zpocon (f07fuc)
complex Hermitian positive-definite matrix, packed storage nag_zppcon (f07guc)
complex matrix .. nag_zgecon (f07auc)
complex symmetric indefinite matrix, ... nag_zsycon (f07nuc)
complex symmetric indefinite matrix, packed storage nag_zspcon (f07quc)
real band matrix ... nag_dgbcon (f07bgc)
real matrix .. nag_dgecon (f07agc)
real symmetric indefinite matrix ... nag_dsycon (f07mgc)
real symmetric indefinite matrix, packed storage .. nag_dspcon (f07pgc)
real symmetric positive-definite band matrix ... nag_dpbcon (f07hgc)
real symmetric positive-definite matrix ... nag_dpocon (f07fgc)
real symmetric positive-definite matrix, packed storage nag_dppcon (f07ggc)

complex triangular band matrix ... nag_ztbcon (f07vuc)
complex triangular matrix .. nag_ztrcon (f07tuc)
complex triangular matrix, packed storage .. nag_ztpcon (f07uuc)
real triangular band matrix ... nag_dtbcon (f07vgc)
real triangular matrix .. nag_dtrcon (f07tgc)
real triangular matrix, packed storage ... nag_dtpcon (f07ugc)

LLH or UHU factorization:
complex Hermitian positive-definite band matrix ... nag_zpbtrf (f07hrc)
complex Hermitian positive-definite matrix .. nag_zpotrf (f07frc)
complex Hermitian positive-definite matrix, packed storage nag_zpptrf (f07grc)

LLT or UTU factorization:
real symmetric positive-definite band matrix .. nag_dpbtrf (f07hdc)
real symmetric positive-definite matrix .. nag_dpotrf (f07fdc)
real symmetric positive-definite matrix, packed storage nag_dpptrf (f07gdc)

Introduction – f07 NAG C Library Manual

f07.14 [NP3645/7]

LU factorization:
complex band matrix .. nag_zgbtrf (f07brc)
complex matrix ... nag_zgetrf (f07arc)
real band matrix .. nag_dgbtrf (f07bdc)
real matrix ... nag_dgetrf (f07adc)

Matrix inversion:
after factorizing the matrix of coefficients:

complex Hermitian indefinite matrix .. nag_zhetri (f07mwc)
complex Hermitian indefinite matrix, packed storage nag_zhptri (f07pwc)
complex Hermitian positive-definite matrix ... nag_zpotri (f07fwc)
complex Hermitian positive-definite matrix, packed storage nag_zpptri (f07gwc)
complex matrix .. nag_zgetri (f07awc)
complex symmetric indefinite matrix .. nag_zsytri (f07nwc)
complex symmetric indefinite matrix, packed storage nag_zsptri (f07qwc)
real matrix .. nag_dgetri (f07ajc)
real symmetric indefinite matrix ... nag_dsytri (f07mjc)
real symmetric indefinite matrix, packed storage .. nag_dsptri (f07pjc)
real symmetric positive-definite matrix ... nag_dpotri (f07fjc)
real symmetric positive-definite matrix, packed storage nag_dpptri (f07gjc)

complex triangular matrix .. nag_ztrtri (f07twc)
complex triangular matrix, packed storage .. nag_ztptri (f07uwc)
real triangular matrix .. nag_dtrtri (f07tjc)
real triangular matrix, packed storage ... nag_dtptri (f07ujc)

PLDLHPH or PUDUHPH factorization:
complex Hermitian indefinite matrix ... nag_zhetrf (f07mrc)
complex Hermitian indefinite matrix, packed storage nag_zhptrf (f07prc)

PLDLTPT or PUDUTPT factorization:
complex symmetric indefinite matrix ... nag_zsytrf (f07nrc)
complex symmetric indefinite matrix, packed storage nag_zsptrf (f07qrc)
real symmetric indefinite matrix .. nag_dsytrf (f07mdc)
real symmetric indefinite matrix, packed storage ... nag_dsptrf (f07pdc)

Solution of simultaneous linear equations:
after factorizing the matrix of coefficients:

complex band matrix ... nag_zgbtrs (f07bsc)
complex Hermitian indefinite matrix .. nag_zhetrs (f07msc)
complex Hermitian indefinite matrix, packed storage nag_zhptrs (f07psc)
complex Hermitian positive-definite band matrix .. nag_zpbtrs (f07hsc)
complex Hermitian positive-definite matrix ... nag_zpotrs (f07fsc)
complex Hermitian positive-definite matrix, packed storage nag_zpptrs (f07gsc)
complex matrix .. nag_zgetrs (f07asc)
complex symmetric indefinite matrix .. nag_zsytrs (f07nsc)
complex symmetric indefinite matrix, packed storage nag_zsptrs (f07qsc)
complex triangular band matrix .. nag_ztbtrs (f07vsc)
complex triangular matrix ... nag_ztrtrs (f07tsc)
complex triangular matrix, packed storage ... nag_ztptrs (f07usc)
real band matrix ... nag_dgbtrs (f07bec)
real matrix .. nag_dgetrs (f07aec)
real symmetric indefinite matrix ... nag_dsytrs (f07mec)
real symmetric indefinite matrix, packed storage .. nag_dsptrs (f07pec)
real symmetric positive-definite band matrix ... nag_dpbtrs (f07hec)
real symmetric positive-definite matrix ... nag_dpotrs (f07fec)
real symmetric positive-definite matrix, packed storage nag_dpptrs (f07gec)
real triangular matrix ... nag_dtrtrs (f07tec)
real triangular matrix, packed storage .. nag_dtptrs (f07uec)
triangular band matrix ... nag_dtbtrs (f07vec)

f07 – Linear Equations (LAPACK) Introduction – f07

[NP3645/7] f07.15

5 Functions Withdrawn or Scheduled for Withdrawal

None.

6 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Higham N J (1988) Algorithm 674: Fortran codes for estimating the one-norm of a real or complex matrix,
with applications to condition estimation ACM Trans. Math. Software 14 381–396

Introduction – f07 NAG C Library Manual

f07.16 (last) [NP3645/7]

	f07 Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Notation
	2.2 Matrix Factorizations
	2.3 Solution of Systems of Equations
	2.4 Sensitivity and Error Analysis
	2.4.1 Normwise error bounds
	2.4.2 Estimating condition numbers
	2.4.3 Componentwise error bounds
	2.4.4 Iterative refinement of the solution

	2.5 Matrix Inversion
	2.6 Packed Storage
	2.7 Band Matrices
	2.8 Block Algorithms

	3 Recommendations on Choice and Use of Available Functions
	3.1 Available s
	3.2 NAG Names and LAPACK Names
	3.3 Matrix Storage Schemes
	3.3.1 Conventional storage
	3.3.2 Packed storage
	3.3.3 Band storage
	3.3.4 Unit triangular matrices
	3.3.5 Real diagonal elements of complex matrices

	3.4 Parameter Conventions
	3.4.1 Option parameters
	3.4.2 Problem dimensions

	3.5 Tables of Available s

	4 Index
	5 Functions Withdrawn or Scheduled for Withdrawal
	6 References

	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities

